Stored Procedures in ColdFusion MX

by Samuel Neff

Most ColdFusion applications are database centric. The key to creating efficient and secure ColdFusion applications is ensuring that all database interaction is both efficient and secure. Stored procedures enable developers to accomplish both of these goals and provide simultaneously provide for greater abstraction between the application code and database details. We’ll explore stored procedures and review a few examples using Oracle, Microsoft SQL Server (MSSQL), and Microsoft Access.
What is a Stored Procedure?

A stored procedure is a piece of database manipulation code that is compiled and stored inside the database. They contain not only simple select, insert, update, and delete statements, but also can encapsulate procedural code. Through compilation and encapsulation, stored procedures provide for more efficient and secure data access.
Whenever you run a query statement against a database, the database actually performs two functions. First it compiles the statement and then it executes it. During compilation the database engine breaks apart the query, identifies the tables and relationships, determines which indexes to use and when to combine and filter records. For example, review the execution plan depicted in Figure 1.
[image: image1.emf]Figure 1. Execution plan for a simple query, created each time with queries or just once with stored procedures.
This execution plan is for a simple query that combines data from five tables using outer joins. With a standard query statement issued through a CFQUERY tag, the database engine recompiles the statement each time it’s executed. With a stored procedure, the query plan is compiled when the stored procedure is compiled. This pre-compilation can result in a significant performance advantage.
Encapsulation—Simplify and Secure

The second significant benefit provided by stored procedures in encapsulation. By placing all database access and manipulation code inside stored procedures, we create lots of little black boxes. Instead of our ColdFusion developers having to be familiar with the database schema, indexes, and SQL, they simply need to know the names of stored procedures which can be written by an experienced DBA. For example, a ColdFusion page might have the poorly written cross-tab query shown in Listing 1.
Listing 1. CFQUERY to perform a cross-tab style query against an Oracle database.

<CFQUERY NAME=”getCrossTabData” DATASOURCE=”ORATEST”>

 SELECT

 DV1.State_ID,

 DV1.Data_Year,

 DV1.Data_Value AS Val1,

 DV2.Data_Value AS Val2

 FROM

 Data_Values DV1,

 Data_Values DV2

 WHERE

 DV1.State_ID = DV2.State_ID

 AND DV1.Data_Year = DV2.Data_Year

 AND DV1.Data_Year BETWEEN #yearStart# AND #yearEnd#
 AND DV1.Field_ID = 1000

 AND DV2.Field_ID = 1001

 ORDER BY

 DV1.State_ID,

 DV1.Data_Year
</CFQUERY>
If we instead use a stored procedure to perform the same select, our ColdFusion code would be greatly simplified, as shown in Listing 2.

Listing 2. CFSTOREDPROC call to perform the same cross-tab style query shown in Listing 1.

<CFSTOREDPROC PROCEDURE="pkg_Simple.sp_Get_Values" DATASOURCE="oratst">

 <CFPROCPARAM
 DBVARNAME="Start_Year"
 VALUE="#yearStart#"
 CFSQLTYPE="cf_sql_numeric">

 <CFPROCPARAM
 DBVARNAME="End_Year"
 VALUE="#yearEnd#"
 CFSQLTYPE="cf_sql_numeric">

 <CFPROCRESULT
 NAME="getCrossTabData">

</CFSTOREDPROC>
This encapsulation provides a number of benefits. It simplifies the ColdFusion code. Instead of having a large query in our application, we simply have a call to a stored procedure. Additionally, with all SQL stored in our database, it is easier to involve our DBA to write or optimize our queries. In this case, our DBA may choose to re-write the above statement using only a single instance of the database table and an Oracle specific function DECODE to generate the cross-tab data we require. Finally, the encapsulation also provides us with greater security.
The link between stored procedures and security is not always obvious. A stored procedure provides specific limited functionality based on required, type-specific input parameters. This limitation is also the root of the additional security provided by stored procedures. If an application is written such that all database interaction is through stored procedures, then the database username and password entered into ColdFusion Administrator for the application can be limited to stored procedures only, and the ColdFusion database source can also be limited to running stored procedures only. With this in place, anyone attempting to gain access to your database will receive only very limited access if they are able to obtain the username and password or otherwise access the ColdFusion server.
Our Sample Database
We’ll review several sample stored procedures in both Oracle and MSSQL. In order to follow along, download the table creation scripts and execute in a test database.

(Link to Create_DB.zip)

Stored Procedure Development on a Budget
While we will be demonstrating stored procedure usage with Microsoft Access, Access supports only an extremely limited syntax for stored procedures. To truly learn how to use stored procedures effectively you should have access to a more robust database such as Oracle, MSSQL, or PostgreSQL. If none of these are available to you, MSDE may be a good option for experimentation and even full-scale development.
MSDE is a desktop version of MSSQL, appropriate for development and workgroup usage. Microsoft Data Engine 1.0 which is included in Microsoft Office 2000 is compatible with MSSQL 7. Microsoft SQL Server 2000 Desktop Engine is included with Microsoft Office XP and is compatible with MSSQL 2000.
The following links provide more information on installing and setting up MSDE.

Microsoft Data Engine 1.0

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odeopg/html/deovrinstallingmsde.asp
Microsoft SQL Server 2000 Desktop Engine

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/distsql/distsql_3usf.asp
Stored Procedures to Insert Data
In our first example we’ll use a stored procedure to insert new records into the Books table shown in Figure 2.

[image: image4.emf]Figure 2. The Books table we’ll be using for our insert example.
The table has three information fields plus an ID. Our stored procedure will therefore accept three input parameters and return one output parameter, the newly inserted ID. Stored procedures for both Oracle and MSSQL are shown in listings 3 and 4.

Listing 3. Stored procedure to insert data into the Books table in Oracle.

PROCEDURE sp_Insert_Book (

 arg_Title Books.Title%type,

 arg_Price Books.Price%type,

 arg_PublishDate Books.PublishDate%type,

 arg_BookID OUT Books.BookID%type)

IS

 num_BookID NUMBER;

BEGIN

 SELECT seq_Books.NEXTVAL

 INTO num_BookID

 FROM DUAL;

 INSERT INTO

 Books (

 BookID,

 Title,

 Price,

 PublishDate)

 VALUES (

 num_BookID,

 arg_Title,

 arg_Price,

 arg_PublishDate);

 arg_BookID := num_BookID;

END;

Listing 4. Stored procedure to insert data into the Books table in MSSQL.

CREATE PROCEDURE sp_Insert_Book (

 @arg_Title VARCHAR(255),

 @arg_Price SMALLMONEY,

 @arg_PublishDate DATETIME,

 @arg_BookID INT OUT)

AS

BEGIN

 INSERT INTO

 Books (

 Title,

 Price,

 PublishDate)

 VALUES (

 @arg_Title,

 @arg_Price,

 @arg_PublishDate);

 SELECT @arg_BookID = @@IDENTITY;

END;
Both stored procedures perform the same function but require slightly different syntax. Oracle has a nice feature where the data types for procedures can be specified to match a field type using the syntax [Table Name].[Field Name]%type. MSSQL provides a simplified mechanism for inserting incremental values, which means the same procedure requires half the code for this simple routine.
While the stored procedure syntax is different, the very nice aspect of stored procedures is that the ColdFusion MX code to call a stored procedure is exactly the same regardless of DBMS. Listing 5 shows a small template used to insert books into the database using the stored procedure, provide confirmation, and a small form.
Listing 5. ColdFusion MX code to insert a book into a database as well as provide the user with confirmation and a small insert form.

<cfset ds = "sqltst">

<!--- <cfset ds = "oratst"> --->

<!---

 If submitting a new book,

 insert the record and display

 confirmation --->

<cfif isDefined("form.title")>

 <cfstoredproc procedure="sp_Insert_Book" datasource="#ds#">

 <cfprocparam

 dbvarname="arg_Title"
 cfsqltype="cf_sql_varchar"

 value="#form.title#">

 <cfprocparam

 dbvarname="arg_Price"

 cfsqltype="cf_sql_numeric"

 value="#form.price#">

 <cfprocparam

 dbvarname="arg_PublishDate"

 cfsqltype="cf_sql_date"

 value="#form.price#">

 <cfprocparam

 dbvarname="arg_BookID"

 cfsqltype="cf_sql_numeric"

 type="out"

 variable="bookId">

 </cfstoredproc>

 <cfoutput>

 <h3>'#form.title#' inserted into database. The ID is #bookId#.</h3>

 </cfoutput>

</cfif>

<cfform action="#CGI.SCRIPT_NAME#" method="post">

 <h3>Insert a new book</h3>

 Title:

 <cfinput

 type="text"

 size="20"

 required="yes"

 name="title"/>

 Price:

 <cfinput

 type="text"

 size="20"

 required="yes"

 name="price"

 validate="float" />

 Publish Date:

 <cfinput

 type="text"

 size="5"

 required="yes"

 name="publishDate"

 validate="date" />

 <input type="submit" value="Insert Book"/>

</cfform>

To call a stored procedure we’re using two ColdFusion MX tags, CFSTOREDPROC and CFPROCPARAM. CFSTOREDPROC initiates the call to the database and wraps the related tags. At a minimum the tag requires the PROCEDURE and DATASOURCE attributes to specify the stored procedure we wish to call and the datasource to use for the call.

CFPROCPARAM is used to both pass parameters to a stored procedure and specify variable names for output parameters. We’re using the DBVARNAME attribute to match parameters by name instead of by position. The CFSQLTYPE attribute is always required and specifies the data type for the parameter. For input parameters, we then include the VALUE attribute with the value to pass. Alternatively, if we wished to pass a null value we could include the NULL attribute.
For the output parameter we again use CFPROCPARAM but specify the TYPE as OUT and provide a ColdFusion variable name in the VARIABLE attribute. While in this template we only display the Book ID to the user we could instead use that ID as a basis for adding authors and publishers to the book record.
Stored Procedures to Return Recordsets

The stored procedures creating in listings 3 and 4 accept arguments and return simple values. Stored procedures can also be used to return records from the database. The procedures in listings 6 and 7 provide book details related to a title search.

Listing 6. Stored procedure to search for books in Oracle.
PACKAGE pkg_Search

IS

 TYPE CUSTOM_REF_CURSOR IS REF CURSOR;

 PROCEDURE sp_By_Title (

 arg_Title Books.Title%type,

 arg_Cursor IN OUT CUSTOM_REF_CURSOR);

END;

PACKAGE BODY pkg_Search

IS

 PROCEDURE sp_By_Title (

 arg_Title Books.Title%type,

 arg_Cursor IN OUT CUSTOM_REF_CURSOR)

 IS

 BEGIN

 OPEN arg_Cursor FOR

 SELECT

 BookID,

 Title,

 Price,

 PublishDate

 FROM

 Books

 WHERE

 Title LIKE '%' || arg_Title || '%';

 END;

END;

Listing 7. Stored procedure to search for books in MSSQL.

CREATE PROCEDURE sp_Search_By_Title (

 @arg_Title VARCHAR(255))

as

BEGIN

 SELECT

 BookID,

 Title,

 Price,

 PublishDate

 FROM

 Books

 WHERE

 Title LIKE '%' + @arg_Title + '%';

END;

The first thing you’ll notice with this example is that the Oracle example is long for the amount of work being performed. In Oracle records are returned to the calling application through a reference cursor. However, a REF CURSOR can not be directly utilized in a stored procedure and instead a custom type needs to be declared within a package—which is a collection of stored procedures and functions, akin to a ColdFusion Component.
All Oracle packages have two parts, the package header and the package body. The header includes type declarations and stored procedure headers. The stored procedure details are then placed in the package body using the syntax shown.

Again we can use similar code to call both stored procedures, shown in listing 8. The only difference in the call for Oracle and MSSQL is the stored procedure name, since the Oracle procedure is a part of a package and MSSQL does not support packages.

<cfset ds = "oratst">

<cfset sp = "pkg_Search.sp_By_Title">

<!---

<cfset ds = "sqltst">

<cfset sp = "sp_Search_By_Title">

--->

<cfoutput>

 <form action="#cgi.SCRIPT_NAME#" method="post">

 <input type="text" name="criteria" size="20" />

 <input type="submit" value="Search"/>

 </form>

</cfoutput>

<cfif isDefined("form.criteria") AND form.criteria NEQ "">

 <cfstoredproc procedure="#sp#" datasource="#ds#">

 <cfprocparam

 dbvarname="arg_Title"

 cfsqltype="cf_sql_varchar"

 value="#form.criteria#">

 <cfprocresult

 name="searchResults">

 </cfstoredproc>

 <cfoutput>

 <h3>Search results for '#form.criteria#'</h3>

 </cfoutput>

 <cfdump var="#searchResults#" label="Search Results">

</cfif>

The example provides a small form for users to enter search criteria and then passes that search to the database. The results are then dumped to the screen.

[image: image2.emf]Figure 3. The search results from our Stored Procedure.

The stored procedure call uses one new tag, CFPROCRESULT. This is used to provide a ColdFusion variable name for the recordset returned from the stored procedure. Since a stored procedure may return multiple recordsets, ColdFusion allows multiple CFPROCRESULT tags within a single CFSTOREDPROC tag.

Stored Procedures with Microsoft Access
While Microsoft Access doesn’t have a procedural SQL language akin to Oracle or MSSQL, you can use stored procedures with MS Access to run simple queries and even pass parameters. This setup still allows us to take advantage of pre-compiled queries and also set up security to stored procedure only access.

Listing 8 is a stored procedure for Microsoft Access. This is the same insert stored procedure as those in listings 3 and 4.

Listing 8. Microsoft Access Stored Procedure to insert a book record.

 INSERT INTO

 Books (

 Title,

 Price,

 PublishDate)

 VALUES (

 [arg_Title],

 [arg_Price],

 [arg_PublishDate]);

Once the procedure is stored in the Access database as a Query, it can be called from ColdFusion similarly to the other procedures we reviewed earlier. The code in listing 5 can be used with this stored procedure with one modification—the last CFPROCPARAM tag must be removed since the Access stored procedure does not return the newly inserted Book ID.

Conclusion
Stored procedures provide a number of advantages over storing queries in ColdFusion templates. The pre-compilation of SQL results in faster execution, and the encapsulation within a database allows greater specialization and security. Stored procedures are simple to use from ColdFusion MX and should be considered for all database centric applications.

Bio

Samuel Neff is a Senior Software Engineer with B-Line Express, a custom software development company in Columbia, MD where he develops applications in ColdFusion, Java, and Flash. He is an active member of the ColdFusion and Flash communities and a Team Macromedia Volunteer.

� EMBED Photoshop.Image.7 \s ���

[image: image3.emf]_1107554076.psd

_1107559848.psd

_1107292314.psd

